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Fast Power/Exponentiation Problem

Input. a ∈ R, n ∈ N

Output. an

Naive algorithm. Sequential multiplication

an = a · a . . . . . . a · a︸ ︷︷ ︸
n

#(multiplication)= n− 1
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Divide-and-Conquer: Divide

n is even
a . . . . . . . . . a︸ ︷︷ ︸

n/2

| a . . . . . . . . . a︸ ︷︷ ︸
n/2

n is odd
a . . . . . . . . . a︸ ︷︷ ︸

(n−1)/2

| a . . . . . . . . . a︸ ︷︷ ︸
(n−1)/2

| a

an =

{
an/2 × an/2 n is even
a(n−1)/2 × a(n−1)/2 × a n is odd
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Complexity Analysis

Basic operation. multiplication
size of subproblem: smaller than n/2

two subproblems (with size roughly n/2) are identical, only
need computing once

W (n) = W (n/2) + Θ(1)

master theorem (case 1)⇒W (n) = Θ(logn)

How to realize this algorithm? recursion vs. iteration
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A Recursive Approach

Algorithm 1: Power(a, n): an = (a−1)−n

1: if n < 0 then return Power(1/a,−n); //handle negative
integer exponent

2: if n = 0 then return 1;
3: if n = 1 then return a;
4: if n is even then return Power(a2, n/2); //smart trick
5: if n is odd then return a× Power(a2, (n− 1)/2);

Naive implementation: x← Power(a, n/2), return x× x.
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An Iterative Approach
Algorithm 2: Square-and-Multiply(a, n)
1: (bk, bk−1, . . . , b1, b0)← BinaryDecomposition(n);
2: y ← 0;
3: power ← 1;
4: for i = 0 to k do
5: if bi = 1 then y ← y + power;
6: power ← power × 2;
7: end
8: return y

Also known as binary exponentiation
Naturally extend to additive semigroups: double-and-add

2 is the window size

How to extend to other window size? Can the efficiency be further
improved?
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Application of Power Algorithm

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

add F0 = 0, we obtain:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Problem. Given initial values F0 = 0, F1 = 1, compute Fn

Naive algorithm. From F0, F1, . . . , repeatedly compute

Fn = Fn−1 + Fn−2

Complexity. sequential addition: Θ(n)
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Properties of Fibonacci Sequence

Proposition. Let {Fn} be a Fibonacci sequence, then(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n

Proof by mathematical induction
Basis. n = 1: (

F2 F1

F1 F0

)
=

(
1 1
1 0

)
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Proof (Induction Step)

Suppose for any n, the formula is correct, i.e.:(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n

Then for n+ 1, according to the definition of Fibonacci sequence:(
Fn+2 Fn+1

Fn+1 Fn

)
=

(
Fn+1 Fn

Fn Fn−1

)(
1 1
1 0

)
Induction premise⇒

(
1 1
1 0

)n(
1 1
1 0

)
=

(
1 1
1 0

)n+1
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Improved Algorithm via Fast Power

Let
M =

(
1 1
1 0

)

Compute Mn using generalized fast power algorithm
M can be diagonalized (M = PM ′P−1) ⇒ we could directly
use fast power algorithm for better efficiency on basic
computer step (matrix mul).

Time complexity:
The number of matrix multiplication T (n) = Θ(logn)
Each matrix multiplication requires 8 number multiplication
The overall complexity is Θ(logn)
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Integer Addition

Addition. Given two n-bit integers a and b, compute a+ b.
Subtraction. Given two n-bit integers a and b, compute a− b.
Grade-school algorithm. Θ(n) bit operations.

Remark. Grade-school addition and subtraction algorithms are
asymptotically optimal.
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Integer Multiplication

Multiplication. Given two n-bit integers a and b, compute a× b.
Grade school method. Θ(n2) bit operations

Θ(n2) atomic bit multiplications + Θ(n2) atomic bit additions
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Divide-and-Conquer: First Attempt (1/2)

Divide Split two n-bit integer x and y into their left and right
halves (low- and high-order bits). Let m = n/2.

x xL xR 2n/2xL + xR

y yL yR 2n/2yL + yR

Use bit shifting to compute

xL = ⌊x/2m⌋, xR = x mod 2m

yL = ⌊y/2m⌋, yR = y mod 2m

Example. x = 1011︸︷︷︸
xL

0110︸︷︷︸
xR

= 1011× 24 + 0110

15 / 75



Divide-and-Conquer: First Attempt (2/2)

xy = (2n/2xL + xR)(2
n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Conquer. Multiply four n/2-bit integers, recursively. (significant
operations)
Combine. Add and shift to obtain result.

T (n) = 4T (n/2)︸ ︷︷ ︸
recursive calls

+ Θ(n)︸ ︷︷ ︸
add,shift

master theorem (case 1)⇒ T (n) = Θ(n2)

# (Subproblems) too many ; Same running time as traditional
grade school method, no progress in efficiency.

How can this method be sped up?
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Gauss’s Trick

Gauss once noticed that although the product of two complex
numbers

(a+ bi)(c+ di) = ac− bd+ (bc+ ad)i

seems involving 4 multiplications, it can in fact be done with 3:

bc+ ad = (a+ b)(c+ d)− ac− bd

Figure: Carl Friedrich Gauss
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Karatsuba’s Algorithm

In 1960, Kolmogorov conjectured grade-school multiplication algo-
rithm is optimal in a seminar. Within a week, Karatsuba, then a
23-year-old student, found a much better algorithm thus disproving
the conjecture. Kolmogorov was very excited about the discovery
and published a paper in 1962.

Figure: Anatolii Karatsuba
Karatsuba algorithm: the first algorithm asymptotically faster than
the quadratic “grade school” algorithm.
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Reduce the Number of Subproblem

Idea. Exploit the dependence among subproblems via Gauss’s trick

xLyR + xRyL︸ ︷︷ ︸
middle term

= (xL + xR)(yL + yR)− xLyL − xRyR

Algorithm 3: KARATSUBA(x, y, n)
1: if n = 1 then return x× y;
2: else m← ⌈n/2⌉;
3: xL ← ⌊x/2m⌋; xR ← x mod 2m;
4: yL ← ⌊y/2m⌋; yR ← y mod 2m;
5: e← KARATSUBA(xL, yL,m);
6: f ← KARATSUBA(xR, yR,m);
7: g ← KARATSUBA(xL + xR, yL + yR,m);
8: return 22me+ 2m(g − e− f) + f ;
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Theory

Complexity Analysis. Now, the recurrence relation is

T (n) = 3T (n/2) +O(n)
T (1) = 1

}
⇒ T (n) = O(nlog2 3) = O(n1.585)

Combining cost f(n) is cheap ; h(n) dominates the overall
complexity. The constant factor improvement from 4 to 3
occurs at the every level of the recursion, the compounding
effect leads to a dramatically lower bound.

[Toom-Cook (1963)] faster generalization of Karatsuba’s method
[Schönhage-Strassen (1971)] even faster, for sufficiently large n.
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Practice

A practical note: it generally does not make sense to recurse all
the way down to 1 bit. For most processors, 16- or 32-bit
multiplication is single operation.

GNU Multiple Precision Library uses different algorithms depending
on size of operands. (used in Maple, Mathematica, gcc,
cryptography, . . . )
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Inner Product

Inner product. Given two length n vectors a = (a1, . . . , an) and
b = (b1, . . . , bn), compute

c = ⟨a,b⟩ =
n∑

i=1

aibi

Grade school. Θ(n) arithmetic operations.

Remark. Grade-school dot product algorithm is asymptotically
optimal.
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Matrix Multiplication

Matrix multiplication. Given two n× n matrix X and Y , compute

Z = XY,Zij =

n∑
k=1

XikYkj

X

i ×

Y

j

=

Z

(i, j)

College-school method: Θ(n3) arithmetic operations
there are n2 elements in Z

computing each element requires n arithmetic multiplications
Is college-school matrix multiplication algorithm asymptotically

optimal? Can divide-and-conquer strategy do better?
24 / 75



Naive Divide-and-Conquer

Strategy. Split matrix into blocks:(
X11 X12

X21 X22

)(
Y11 Y12
Y21 Y22

)
=

(
Z11 Z12

Z21 Z22

)
in which:

Z11 = X11Y11 +X12Y21 Z12 = X11Y12 +X12Y22
Z21 = X21Y11 +X22Y21 Z22 = X21Y12 +X22Y22

Recurrence relation: master theorem (case 1)

T (n) =

recursive calls︷ ︸︸ ︷
8T (n/2) +

add/form submatrices︷ ︸︸ ︷
Θ(n2)

T (1) = 1

⇒ T (n) = Θ(n3)
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Breakthrough

College algorithm: Θ(n3)

Naive divide-and-conquer strategy: Θ(n3) (unimpressive)

For a quite while, this was widely believed to the the best
running time possible, it was was even proved that in certain
models no algorithms can do better.

Great excitement: This effciency can be further improved by some
clever algebra.
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Strassen Algorithm (1/3)

Volker Strassen first published this algorithm in 1969
proved that the Θ(n3) general matrix multiplication algorithm
wasn’t optimal
faster than the standard matrix multiplication algorithm and is
useful in practice for large matrices,
inspire more research about matrix multiplication that led to
faster approaches, e.g. the Coppersmith-Winograd algorithm.

Figure: Volker Strassen
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Strassen Algorithm (2/3)(
X11 X12

X21 X22

)(
Y11 Y12
Y21 Y22

)
=

(
Z11 Z12

Z21 Z22

)
Define 7 instead matrix:

M1 =X11(Y12 − Y22)

M2 =(X11 +X12)Y22

M3 =(X21 +X22)Y11

M4 =X22(Y21 − Y11)

M5 =(X11 +X22)(Y11 + Y22)

M6 =(X12 −X22)(Y21 + Y22)

M7 =(X11 −X21)(Y11 + Y12)

Express Zij via instead matrices

Z11 =M5 +M4 −M2 +M6

Z12 =M1 +M2

Z21 =M3 +M4

Z22 =M5 +M1 −M3 −M7

Z12 = M1 +M2 = X11 × (Y12 − Y22) + (X11 +X12)× Y22

= X11 × Y12 +X12 × Y22
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Strassen Algorithm (3/3)

Reduce the number of subproblems from 8 to 7

Recurrence relation for time complexity (18 is number of
additions/substraction performed at each application of the
algorithm)

T (n) = 7T (n/2) + 18n2

T (1) = 1

}
⇒ T (n) = Θ(nlog72) = Θ(n2.8075)

Q. What if n is not the power of 2?
A. Could pad matrices with zeros.

1 2 3 0
4 5 7 0
7 8 9 0
0 0 0 0




10 11 12 0
13 14 15 0
16 17 18 0
0 0 0 0

 =


84 90 96 0
201 216 231 0
318 342 366 0
0 0 0 0
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More about Matrix Multiplication

The decompsition is so tricky and intricate that one wonders how
Strassen was ever able to discover it!

Complexity of Matrix Multiplication
Best upper-bound: O(n2.376) — Coppersmith-Winograd
algorithm
Known lower-bound: Ω(n2)

Applications
scientific computation, image processing, data mining
(regression, aggregation, decision tree)
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Motivation

We have studied how to multiply
Integers: Gauss’s trick
Matrix: Strassen algorithm

How to multiply polynomials?

Applications of polynomial multiplication
Fastest polynomial multiplication implies fastest integers
multiplication

polynomials and binary integers are quite similar — just
replace the variable x by the base 2 and watch out for carries

Multiplying polynomials is crucial for signal processing
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Polynomials: Coefficient Representation

Polynomial. coefficient representation

A(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1

B(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1
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Polynomial Operation
Add. Θ(n)

A(x) +B(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)x
n−1

Evaluate. three choices:
Naive algorithm. compute each term one by one: Θ(n2)
Caching algorithm. cache xi: Θ(n)
Horner algorithm.
a0 + (x(a1 + x(a2 + · · ·+ x(an−2 + x(an−1))))): Θ(n)
秦九韶 discovered this algorithm hundreds of years earlier
参考链接: https://zhuanlan.zhihu.com/p/22166332

Multiply (convolve). Θ(n2) using brute force algorithm
A(x)×B(x) = a0b0 + (a0b1 + a1b0)x+ · · ·+ an−1bn−1x

2n−2

=
2n−2∑
i=0

cix
i,where ci =

i∑
j=0

ajbi−j
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Pictorial View of Convolution

(c0, . . . , c2n−2) = (a0, . . . , an−1)⊗ (b0, . . . , bn−1)

a0b0 a0b1 . . . a0bn−2 a0bn−1

a1b0 a1b1 . . . a1bn−2 a1bn−1

... ... .........
an−2b0 an−2b1 . . . an−2bn−2 an−2bn−1

an−1b0 an−1b1 . . . an−1bn−2 an−1bn−1
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Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has exactly n complex roots.

Corollary. A degree n− 1 polynomial A(x) is uniquely specified by
its evaluation at n distinct values of x.
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Polynomials: Point-Value Representation

Polynomial. [point-value representation]

A(x) : (x0, y0), . . . , (xn−1, yn−1)

B(x) : (x0, z0), . . . , (xn−1, zn−1)
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Polynomial Operation

Add. Θ(n) add operations.

A(x) +B(x) : (x0, y0 + z0), . . . , (xn−1, yn−1 + zn−1)

Multiply (convolve). Θ(n), but need 2n− 1 points.

A(x)×B(x) : (x0, y0 × z0), . . . , (x2n−1, y2n−1 × z2n−1)

Evaluate. Θ(n2) using Lagrange’s formula

A(x) =

n−1∑
k=0

yk
Πj ̸=k(x− xj)

Πj ̸=k(xk − xj)
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Converting Between Two Representations

Trade-off. Fast evaluation or fast multiplication. We want both!

representation multiply evaluate
coefficient Θ(n2) Θ(n)

point-value Θ(n) Θ(n2)

Goal. Efficient conversion between two representations ⇒ have the
good of both: all operations fast

a0, a1, . . . , an−1

coefficient representation

(x0, y0), . . . , (xn−1, yn−1)

point-value representation
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Converting Between Two Representations: Evaluation

Coefficient ⇒ Point-value

Given A(x) = a0 + a1x+ · · ·+ an−1x
n−1, evaluate it at n distinct

points x0, . . . , xn−1.
y0
y1
y2
...

yn−1

 =


1 x0 x20 . . . xn−1

0

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2... ... ... . . . ...

1 xn−1 x2n−1 . . . xn−1
n−1




a0
a1
a2
...

an−1


Running time. Θ(n2) for matrix-vector multiply (or n Horner’s).
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Converting Between Two Representations: Interpolation

Point-value ⇒ Coefficient

Given n distinct points x0, . . . , xn−1 and values (y0, . . . , yn−1),
find unique polynomial A(x) = a0 + a1x+ · · ·+ an−1x

n−1, that
has given values at given points.

a0
a1
a2
...

an−1

 =


1 x0 x20 . . . xn−1

0

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2... ... ... . . . ...

1 xn−1 x2n−1 . . . xn−1
n−1


−1 

y0
y1
y2
...

yn−1



Vandermonde matrix is invertible iff xi’s are distinct.
Running time. Θ(n3) for Gaussian elimination
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Restate Our Goal

Both known conversions are inefficient
coefficients ⇒ point-value: Θ(n2)

point-value ⇒ coefficients: Θ(n3)

More efficient conversions are needed.

Next, we begin with the first direction. We restate our goal:

Given n coefficients, computing n point-value tuples quickly.
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Divide-and-Conquer for Evaluation

A(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7

two choices for dividing: frequency vs. time
Decimation in frequency. Break polynomial into low and high
powers.

Alow(x) = a0 + a1x+ a2x
2 + a3x

3

Ahigh(x) = a4 + a5x+ a6x
2 + a7x

3

A(x) = Alow(x) + x4Ahigh(x).

Decimation in time. Break polynomial into even and odd powers.
Aeven(x) = a0 + a2x+ a4x

2 + a6x
3

Aodd(x) = a1 + a3x+ a5x
2 + a7x

3

A(x) = Aeven(x
2) + xAodd(x

2)

radix-2 decimation-in-time (DIT)
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Naive Idea

Naive idea. Randomly pick n distinct points x0, . . . , xn−1, then
compute A(x) via Aeven(x2) + xAodd(x2).

T (n): evaluate a degree n− 1 polynomial at n points
E(n): evaluate a degree n− 1 polynomial at one point

Issue. Efficiency does not improve
Evaluating A(x) of degree n− 1 at n points: T (n) = n ·E(n)

Evaluating Aeven(x) and Aodd(x) both of degree n/2− 1 at n
points: 2× n · E(n/2) = 2n · E(n/2)

E(n) is a linear function ; no efficiency improvement

Goal. Reduce the number of evaluated points
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Basic Idea (1/2)

Basic idea. Introduce simple structure by choosing the n points to
be positive-negative pairs, that is,

±x0,±x1, . . . ,±xn/2−1

Note that the even powers of xi coincide with those of −xi ⇒ the
computations required for each A(xi) and A(−xi) overlap a lot.

A(xi) = Aeven(x
2
i ) + xiAodd(x

2
i )

A(−xi) = Aeven(x
2
i )− xiAodd(x

2
i )

Now, evaluating degree (n− 1) A(x) at n paired points
±x0, . . . ,±xn/2−1 ⇒ evaluating degree (n/2− 1) Aeven(x) and
Aodd(x) at just n/2 points: x20, . . . , x

2
n/2−1.
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Basic Idea (2/2)

A(x)
degree = n− 1

Aeven(x), Aodd(x)
degree = n/2− 1

x20 x21 · · · x2n/2−1

+x0 −x0 +x1 −x1 · · · +xn/2−1 −xn/2−1

Now, the original problem of size n is in this way recast as two
subproblems of size n/2 followed by some linear-time arithmetic.

T (n): evaluate a degree (n− 1) polynomial at n points

If we could recurse, we would get a divide-and-conquer
procedure with running time:

T (n) = 2T (n/2) + Θ(n)

which is Θ(n logn), exactly what we want.
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Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

To recurse at the next level, we need the n/2 evaluation
points x20, x

2
1, . . . , x

2
n/2−1 themselves to be plus-minus pairs.

But how can a square to be negative?

Unless, of course, we use complex numbers.

47 / 75



Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

To recurse at the next level, we need the n/2 evaluation
points x20, x

2
1, . . . , x

2
n/2−1 themselves to be plus-minus pairs.

But how can a square to be negative?

Unless, of course, we use complex numbers.

47 / 75



Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

To recurse at the next level, we need the n/2 evaluation
points x20, x

2
1, . . . , x

2
n/2−1 themselves to be plus-minus pairs.

But how can a square to be negative?

Unless, of course, we use complex numbers.

47 / 75



Technical Hurdle

Technical hurdle. The plus-minus trick only works at the top level
of the recursion.

To recurse at the next level, we need the n/2 evaluation
points x20, x

2
1, . . . , x

2
n/2−1 themselves to be plus-minus pairs.

But how can a square to be negative?

Unless, of course, we use complex numbers.

47 / 75



Which Complex Numbers?

Fine, but which complex numbers? Let us figure out by “reverse
engineer” the process.

At the bottom of the recursion, we have a single point, say, 1.
In the level above it must consists of its square roots, ±1.
The next level up is (+1,−1) and (+i,−i), until we reach
n = 2k leaf nodes.

+1

+1 −1

+1 −1 +i −i
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The Choice of n Complex Numbers

An nth root of unity is a complex number such that xn = 1.

Fact. The nth roots of unity are ω0 = 1, ω1, ω2, . . . , ωn−1, where
ω = e2πi/n = cos 2π

n + i sin 2π
n

Proof. (ωk)n = (e2πik/n)n = (eπi)2k = (−1)2k = 1

eix = cosx+ i sinx

If n is even, the nth roots are plus-minus paired, ωn/2+j = −ωj

Squaring them produces the (n/2)-th roots of unity:
v0, v1, . . . , v

n/2−1, where v = ω2 = e4πi/n.
If we start with ω0, ω1, ω2, . . . , ωn−1 for some n = 2k, then at
k-level of recursion we will have the (n/2k)-th roots of unity.

All these sets of roots are plus-minus paired ⇒
Divide-and-conquer algorithm will work perfectly
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Demo of n = 8

x

y

ω0

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω0 =1

ω1 =e
π
4
i =

√
2

2
+

√
2

2
· i

ω2 =e
π
2
i = i

ω3 =e
3π
4
i = −

√
2

2
+

√
2

2
· i

ω4 =eπi = −1

ω5 =e
5π
4
i = −

√
2

2
−
√
2

2
· i

ω6 =e
3π
2
i = −i

ω7 =e
7π
4
i =

√
2

2
−
√
2

2
· i
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Recursion Structure and FFT

1 = ω0 = ω8

ω4 ω0

ω2 ω6 ω4 ω0

ω1 ω5 ω3 ω7 ω2 ω6 ω4 ω0

DFT: Fourier Matrix Mn(ω)

y0
y1
y2
y3
...

yn−1


=



1 ω0 ω1
0 . . . ωn−1

0

1 ω1 ω2
1 . . . ωn−1

1

1 ω2 ω2
2 . . . ωn−1

2

1 ω3 ω2
3 . . . ωn−1

3... ... ... . . . ...
1 ωn−1 ω2

n−1 . . . ωn−1
n−1





a0
a1
a2
a3
...

an−1
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Fast Fourier Transform (FFT)

Refined Goal. Evaluate A(x) = a0 + · · ·+ an−1x
n−1 at its nth

root of unity: ω0, ω1, . . . , ωn−1

Divide. Break up polynomial into even and odd powers:

Aeven(x) = a0 + a2x+ a4x
2 + · · ·+ an−2x

n/2−1

Aodd(x) = a1 + a3x+ a5x
2 + · · ·+ an−1x

n/2−1

A(x) = Aeven(x
2) + xAodd(x

2)

Conquer. Evaluate Aeven(x) and Aodd(x) at the n/2th roots of
unity: v0, v1, . . . , vn/2−1

Combine. vk = (ωk)2

A(ωk) = Aeven(v
k) + ωkAodd(v

k), 1 ≤ k < n/2

A(ωk+n/2) = Aeven(v
k)− ωkAodd(v

k), 1 ≤ k < n/2

vk = (ωk+n/2)2 (ωk+n/2) = −ωk
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Pseudocode of FFT Algorithm

Algorithm 4: FFT(A,n, ω)
Input: coefficient representation of degree n− 1 polynomial

A, principal n-th root of unity ω = e2πi/n

Output: value representation A(ω0), . . . , A(ωn−1)
1: if n = 1 then return a0;
2: express A(x) = Aeven(x2) + xAodd(x2);
3: FFT(Aeven,

n
2 , ω

2)→ (Aeven((ω2)0), . . . , Aeven((ω2)n/2−1));
4: FFT(Aodd,

n
2 , ω

2)→ (Aodd((ω2)0), . . . , Aodd((ω2)n/2−1));
5: for j = 0 to n− 1 do
6: A(wj) = Aeven(ω2j) + ωjAodd(ω2j) // Θ(n);
7: end
8: return A(ω0), . . . , A(ωn−1);
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FFT Summary

Theorem. Assume n = 2k. FFT algorithm evaluates a degree n− 1
polynomial at each of the n-th roots of unity in Θ(n logn) steps.

Running time

T (n) = 2T (n/2) + Θ(n)⇒ T (n) = Θ(n logn)

Essence: choose n points with special structure to accelerate DFT
computation.

a0, a1, . . . , an−1

coefficient representation

(ω0, y0), . . . , (ωn−1, yn−1)

point-value representation

Θ(n logn)

???
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Recap

We first developed a high-level scheme for multiplying polynomials

coefficient representation ⇒ point-value representation

Point-value representation makes it trivial to multiply polynomials,
but the input-output form of algorithm is specified as coefficient
representation.

So we designed FFT: coefficient ⇒ point-value in time just
Θ(n logn), where the points {xi}n are complex n-th roots of
unity (1, ω, ω2, . . . , ωn−1).

⟨values⟩ = FFT(⟨coefficients⟩, ω)

a0, a1, . . . , an−1

coefficient representation

(x0, y0), . . . , (xn−1, yn−1)

point-value representation

Evaluation

Interpolation
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Interpolation

The last remaining piece of the puzzle is the inverse operation —
interpolation. It turns out amazingly that:

⟨coefficients⟩ = 1

n
FFT(⟨values⟩, ω−1)

Interpolation is thus solved in the most simple and elegant way,
using the same FFT algorithm, but called with ω−1 in place of ω!

This might seem like a miraculous coincidence, but it will make
a lot more sense when recasting polynomial operations in the
language of linear algebra.
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Inverse Discrete Fourier Transform

Point-value ⇒ Coefficient

Given n distinct points x0, . . . , xn−1 and values y0, . . . , yn−1, find
unique polynomial A(x) = a0 + a1x+ · · ·+ an−1x

n−1, that has
given values at given points.

Inverse DFT: Fourier Matrix inverse Fn(ω)
−1



a0
a1
a2
a3
...

an−1


=



1 ω0 ω1
0 . . . ωn−1

0

1 ω1 ω2
1 . . . ωn−1

1

1 ω2 ω2
2 . . . ωn−1

2

1 ω3 ω2
3 . . . ωn−1

3... ... ... . . . ...
1 ωn−1 ω2

n−1 . . . ωn−1
n−1



−1 

y0
y1
y2
y3
...

yn−1
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Fn(ω) =



1 1 1 . . . 1
1 ω1 ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

1 ω3 ω6 . . . ω3(n−1)

... ... ... . . . ...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)



Fn(ω
−1) =



1 1 1 . . . 1

1 ω−1 ω−2 . . . ω−(n−1)

1 ω−2 ω−4 . . . ω−2(n−1)

1 ω−3 ω−6 . . . ω−3(n−1)

... ... ... . . . ...
1 ω−(n−1) ω−2(n−1) . . . ω−(n−1)(n−1)
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Key Fact

Gn =
1

n
Fn(ω

−1) = Fn(ω)
−1

Claim. Fn and Gn are inverses
Proof. Examine FnGn

(FnGn)kk′ =
1

n

n−1∑
j=0

ωkjω−jk′ =
1

n

n−1∑
j=0

ω(k−k′)j =

{
1 if k = k′

0 otherwise

Summation lemma. Let ω be the principal n-th root of unity. Then
n−1∑
j=0

ωkj =

{
n if k = 0 mod n
0 otherwise

If k is the multiple of n then ωk = 1 ⇒ series sums to n

Each ωk is a root of xn − 1
xn − 1 = (x− 1)(1 + x+ x2 + · · ·+ xn−1) ⇒ if ωk ̸= 1 we
have: 1 + ωk + ωk(2) + · · ·+ ωk(n−1) = 0 ⇒ series sums to 0
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Consequence

To compute inverse FFT, apply same algorithm but use
ω−1 = e−2πi/n as principal n-th root of unity (and divide the
result by n).
switch the role of ⟨a0, . . . , an−1⟩ and ⟨y0, . . . , yn−1⟩
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Interpolation Resolved

⟨values⟩ = FFT(⟨coefficients⟩, ω)
A(ω0)
A(ω1)
A(ω2)

...
A(ωn−1)

 =


1 ω0 ω2

0 . . . ωn−1
0

1 ω1 ω2
1 . . . ωn−1

1

1 ω2 ω2
2 . . . ωn−1

2... ... ... . . . ...
1 ωn−1 ω2

n−1 . . . ωn−1
n−1




a0
a1
a2
...

an−1



⟨coefficients⟩ = 1

n
FFT(⟨values⟩, ω−1)

a0
a1
a2
...

an−1

 =


1 ω0 ω2

0 . . . ωn−1
0

1 ω1 ω2
1 . . . ωn−1

1

1 ω2 ω2
2 . . . ωn−1

2... ... ... . . . ...
1 ωn−1 ω2

n−1 . . . ωn−1
n−1


−1 

A(ω0)
A(ω1)
A(ω2)

...
A(ωn−1)
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Inverse FFT Summary

Theorem. Assume n = 2k. Inverse FFT algorithm interpolated a
degree n− 1 polynomial given values at each of the n-th roots of
unity in Θ(n logn) steps.

Running time. Almost the same algorithm as FFT.

a0, a1, . . . , an−1

coefficient representation

(ω0, y0), . . . , (ωn−1, yn−1)

point-value representation

Θ(n logn)

Θ(n logn)
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Polynomial Multiplication

Theorem. Two degree (n− 1)-polynomials can be multiplified in
Θ(n logn) steps. (pad with 0s to make n a power of 2)

a0, a1, . . . , an−1

b0, b1, . . . , bn−1

coefficient representation

A(ω0), . . . , A(ω2n−1)
B(ω0), . . . , B(ω2n−1)

2 FFTs Θ(n logn)

C(ω0), . . . , C(ω2n−1)

point-value
multiplication

Θ(n)

c0, c1, . . . , c2n−2, c2n−1 = 0

coefficient representation

1 inverse FFT Θ(n logn)

Actually, 2n− 1 point-value tuples are sufficient.
But, FFT requires the input size to be 2k, so is the output size
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Remarks

Standard FFT. Evaluating degree (n− 1)-A(x) at its n-th root of
unity ω0, ω1, . . . , ωn−1 by evaluating degree n/2− 1 polynimials
Aeven(x) and Aodd(x) at their n/2-th root of unity.
We choose the degree of polynomial as input size, since it
determines the depth of recursion call.

Standard FFT can be easily extended to evaluating degree (n− 1)
polynomial A(x) at its 2n-th root of unity ω0, ω1, . . . , ω2n−1 by
evaluating degree (n/2− 1) polynomials Aeven(x) and Aodd(x) at
their n-th root of unity.
We still choose the degree of polynomial as input size, the
recurrence relation is similar,

f(n) : Θ(n)→ Θ(2n)

The overall complexity does not change in asymptotic sense.
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Extension of FFT

FFT works in the field of complex numbers C, the roots might be
complex numbers ; precision lose is inevitable
Sometimes we only need to work in a finite field, e.g. F = Z/p, the
integers modulo a prime p.

Primitive n-th roots of unity exist whenever n divides p− 1,
so we have p = ξn+ 1 for a positive integer ξ.
Specially, let ω be a primitive (p− 1)-th root of unity, then an
n-th root of unity — α can be found by letting α = ωξ

This is number-theoretic transform (NTT): obtained by
specializing the discrete Fourier transform to F.

no precision loss
much faster
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Applications of FFT

Optics, acoustics, quantum physics, telecommunications,
radar, control systems, signal processing, speech recognition,
data compression, image processing, seismology, mass
spectrometry...
Digital media. [DVD, JPEG, MP3, H.264]
Medical diagnostics. [MRI, CT, PET scans, ultrasound]
Numerical solutions to Poisson’s equation.
Shor’s quantum factoring algorithm.
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Fourier Analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any (sufficiently
smooth) periodic function can be expressed as the sum of a series
of sinusoids.

Euler’s identity.
eix = cosx+ i sinx.

Sinusoids. Sum of sine and cosines = sum of complex exponentials.
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Fourier Transform

Figure: time domain vs. frequency domain

FFT.

Fast way to convert between time-domain and frequency-domain

Alternate viewpoint.

Fast way to multiply and evaluate polynomials
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FFT: Brief History

Gauss. Analyzed periodic motion of asteroid Ceres (in Latin)
Runge-König (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm, x-ray
crystallography.
Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and
tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.
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FFT in Practice

Fastest Fourier transform in the West. [Frigo and Johnson]
Optimized C library.
Features: DFT, DCT, real, complex, any size, any dimension.
Won Wilkinson Prize ’99.

Implementation details.
Instead of executing predetermined algorithm, it evaluates
your hardware and uses a special-purpose compiler to generate
an optimized algorithm catered to “shape” of the problem.
Core algorithm is nonrecursive version of Cooley-Tukey.
Θ(n logn), even for prime sizes.
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Integer Multiplication, Redux
Integer multiplication. Given two n bit integers a = an−1 . . . a1a0
and b = bn−1 . . . b1b0, compute their product ab.

1 Form two polynomials (base-2 representation ⇒ a = A(2),
b = B(2))

A(x) = a0 + a1x+ · · ·+ an−1x
n−1

B(x) = b0 + b1x+ · · ·+ bn−1x
n−1

2 Compute C(x) = A(x)B(x) via FFT, evaluate C(2) = ab

Running time: Θ(n logn) complex arithmetic operations.
Practice. GMP uses brute force, Karatsuba, and FFT, depending
on the size of n.

Figure: the fastest bignum library on the planet
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Summary of This Lecture (1/3)

Concept of Divide-and-Conquer
Main Idea. Reduce problems to subproblems
Principle. Subproblems should be of the same type of the original
problem, and can be solved individually.

Direct dividing: splitting original problem into subproblems
with roughly same size

FindMinMax, Merge Sort
Sophisticated dividing

General selection: using median as pivot (finding the pivot
itself requires effort)
Cloest pair of points: analysis of the strip around the midline
Convex hull: sometime it is hard to split in a balance manner
(convex hull)
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Summary of This Lecture (2/3)

Implementation. Recursion or iteration (be careful of the smallest
subproblem which can be solved outright)
Time complexity

Finding the recurrence relation and initial values, solving the
recurrence relation

Recurrence relation of divide-and-conquer algorithm

T (n) = aT (n/b) + f(n)

a: #(subproblems), n/b: size of subproblems
f(n): cost of dividing and combining
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Summary of This Lecture (3/3)

Optimization trick 1. Reduce the number of subproblems: when
f(n) is not very large, h(n) = nlogab dominates the overall
complexity ⇒ T (n) = Θ(h(n))

Reduce a can immediately lowering the order of T (n)
When subproblems are related ; exploit relations to solve
some subproblems by combining the solutions to other
subproblems

Examples
power algorithm: subproblems are same
simple algebraic trick: integer multiplication (f(n) is still low)
exploit dependence: matrix multiplication (f(n) may increase
but does not affect the order)

Optimization trick 2. Reduce the cost of dividing and combining
f(n): add global preprocessing

closest pair of points
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Important Divide-and-Conquer Algorithms

Searching algorithm: binary search

Soring algorithm: quick sort, merge sort

Selection algorithm: find min/max, general selection algorithm

Cloest pair of points, Convex hull

Fast Power algorithm

Multiplying matrices: Strassen algorithm

Multiplying integers, polynomials: FFT
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